SharkTime Software 8 X 2025

The era of generative content creation
using artificial intelligence

Era generatywnego tworzenia tresci z
wykorzystaniem sztucznej inteligendji

— Piotr Chlebek

Copyright ® 2025 Piotr Chlebek L B e

https://www.bsc.com.pl/zlot-programistow-delphi-2025/
https://www.linkedin.com/in/piotrr/

Before we start. ..

Credits to
e Historical images (inc. this background)
e Contextual illustrations: Gemini 2.5 Flash Image (Nano Banana)
e More sources inline

Feedback or questions ?

Opinions and views
expressed in this presentation
are solely my own or quoted.
They are not related to any
company for which | work /
worked.

In Polish: Opinie i poglady
wyrazone w tej prezentacji sg
wytgcznie moje wtasne lub
cytowane.

Nie sg powigzane z zadng
firmg, dla ktorej pracuje /
pracowatem.

| encourage You to give me feedback or ask a questions.
Yes, You can interrupt me during the presentation.

https://wikimedia.org/

About me

d 'm

Piotr Chlebek

e ~25 years of experience, R&D a wide range
of innovative projects

Speech Recognition & Machine Learning projects, successful
products on the market with industry recognition & awards.

e ML/DS passionate
o community active member
o - software for education

o Chess programming

e | Love Delphi (hobby++)

https://www.mlgdansk.pl/
https://www.sharktime.com/en_SharkyNeuralNetwork.html

SharkTime Software 8 X 2025

What 1s GenAl?

Generative artificial intelligence (Generative Al, GenAl,
or GAl) is a subfield of artificial intelligence that uses
generative models to produce text, images, videos, audio, Sanaratiue Waursl Hetsork
software code or other forms of data. These models learn = ‘ot ora '
the underlying patterns and structures of their training data = ™ ="
and use them to produce new data based on the input,

which often comes in the form of natural language prompts.

Discriminative Neural Network

Input

Source: R

Input

Output

Copyright © 2025 Piotr Chlebek

https://en.wikipedia.org/wiki/Generative_artificial_intelligence
https://www.bsc.com.pl/zlot-programistow-delphi-2025/

A short history of Gen Al

Sources: ,)

" 1945 - ENIAC
1996 - 3dfx Voodoo
2001 - IBM Power4

Source Code Gen Al
2021 - OpenAl Codex (GPT-3 based) trained on public GitHub code
2021 - GitHub Copilot - the first generative Al coding assistant

[
1
1
1
1
1
1
1
1
1
1

2002 - Sony PlayStation 2
2006 - Intel Core Duo
2007 - Nvidia CUDA

2016

2023.g4 - “Agentic Coding”
2025.02 - “Vibe Coding”
2025.05 - “Spec-Driven Al Development”

Birth of Al

Avrtificial Intelligence
introduced as a scientific
discipline at the Dartmouth
Conference.

Perceptron (1958).

ELIZA (1961).

The Rise of NN

Recurrent Neural Networks
(RNNSs; 1982) & Long
Short-Term Memory
networks (LSTMs; 1997) for
sequences.

Variational Autoencoders
(VAE; 2013)

GANSs & Diffusion
Models

Generative Adversarial
Networks (GANs; 2014)
have revolutionized image
generation with adversarial
training.

Diffusion Models (2015).

Recent Advances
in Gen Al

Transformer Architecture
(2017).

Generative Pre-trained
Transformer (GPT; 2018)
breakthrough in natural
language generation using
transformers.

The Rise of
text-to-image

“Blooming Meadow”

Multimodal & long context -
GPT-4 (2023).

Emergence of text-to-video -
Sora, Claude 3, Gemini 1.5

DALL-E (2021),
Rise of high-quality,
text-to-image tools including

o (2024).
oDr_)f(fan—_source; ElE Al Code Agents & On-Device Al
iffusion and artistic (2025).

Midjourney (2022).

https://www.igmguru.com/blog/history-of-generative-ai
https://en.wikipedia.org/
https://medium.com/intuitionmachine/the-alien-look-of-deep-learning-generative-design-5c5f871f7d10

How to use GenAl

Access methods Way of approaching

Spec-Driven Al Development Agentic Coding

@ EXTERNAL COPILOT / LLM Q

\a

ACTUALLY WORKS!

Copilot: Your Coding Sidekick Less Bugs, More Fun!
& Smart Tutor

VIBE CODING

| |

Integrated Copilot, External Copilot / LLM Vibe Coding Spec-Driven Al Agentic Coding
IDE help & tutor or External Tools Development

Yes, you can _ ,
integrate external Hybrid Yes, it can overlap!

“Transparent
Background™?|

What can GenAl generate?

[S] Small: code completion, code snippets, comments & docstrings,
summaries, functions, procedures, interfaces, functional tests, unit tests,
property/method stubs, wrappers, SQL snippets, Regex, commit
messages, changelog entries, code review, error explanations, debug
hints, the resources, localized texts, ...

[L] Large: classes, units, forms, components code, REST API
clients/servers, refactor patches, serialization, database layers, data model
design, test suites, documentation, collection of resources, ...

[XL] Extra Large: new project templates, sample apps, entire services,
middleware layer, entire apps, entire systems, agentic workflows,
automation bots, large refactors, larger documentation, ...

[!] But: GenAl often gets it wrong, causing mess and added complexity.

&

Practical applications Brainstorm
in the broad context of Delphi
GenAl (potentially) in the Delphi IDE environment Runtime

Autocomplete,
Auto-(re)implement,
Code Conversion,
Suggestions,
Adding Comments,
Decomposition,

3rd party Integration,
Localization, ...

|

Completion,
Codel/Ul generation,
Refactoring,

Code modernization,
Code translation

Summarize, Analyze,
Estimate, Explain,
Generate: Resources,
Test Cases, Docstrings,
Specs/UML, Mocks/Stubs,
Changelog, Release Note,
Help, ...

1 l

Explanation,
Documentation,
Test,

QA

Al-assisted component design,
GenAl-driven debugging,
Conversational compiler errors,
Al pair programming for Delphi,
FireDAC + LLM - data querying
and natural summaries,

Experimental

Embedded:

- Models (e.g. LLM)
- Chatbots

- Voice assistants

- Natural-language
commands

|

Embed, Integrate

Wait! We're developers, but what about
creating GenAl applications in Delphi?

Impact

Machine of five states perspective (1/4)

Idea source: High risk projects by dr Tadeusz Lis

Money «_

People I &

?Resources

oy

> I Time

k

Scope

Impact

How to deal

Machine of five states perspective (2/4) with it

Use if possible and
makes sense

Money
:‘> T~ Resources

Be careful,
talents needed

—V

- Reschedule, iterate,
> People ' ﬂ\ I Time <,I: agile, ...

Ll. Track & manage

Negotiate & manage

> Scope

Impact

Machine of five states perspective (3/4)

> Money «

Cheap to vibe,
Cheap to operate,
Expensive to build

e
-

Temptation to reduce
the workforce,
Experts needed for
supervision

T

—
e

— Resources
‘e‘/-

\

\

\ I Time <

1\’
\

GenAl

perspective

\\n

Very fast once built,
But building won't
be quick

An increased scope
of work is at your
fingertips

New specific risks,
"hallucinations”,

mess

Impact

Machine of five states perspectwe (4/4)

Chean tn vihea |

Temptation to reduce
the workforce,
Experts needed for
supervision

('\

Oi

But that's not all!

Time-to-Market++, Faster Iterations & feedback,
Rapid Prototyping / POC / MVP,

Higher Productivity, Better Focus (Less Cognitive
Load), Scalability++, Cross-Platform Support++, API
Integration++, Interoperability++, Legacy
Modernization++, Test Coverage++, Architecture
Compliance++, UX/UI Ideation++, Design

Exploration++, Domain Intelligence++, Onboarding++,

Knowledge Retention++, Communication++, ...

:(New kinds of problems/bugs are blooming!
(Causing mess and adding complexity!

fingertips d

GenAl
perspective

Very fast once built,
But building won't
be quick

risks,

ons-,

Let's compare the approaches

Approach

Developer Role
Al Interaction

Best Suited For

Scalability
Maintainability
Upfront Effort
Flexibility

Observability

Vibe Coding
Conversational

Prompt engineer
lterative refinement

Rapid prototyping, solo dev

Very Low
Low

Minimal

Prompt logs and diffs

Spec-Driven Al Development
Structural

Specification author
Guided by specifications

Structured projects

Moderate*

High

High

ki

Moderate

High

Agentic Coding
Autonomous, goal-oriented

Goal setter
Autonomous execution
Large-scale applications

Moderate

*

Low

13

Low

GenAl examples

Vibe Coding - Almost any SOTA LLM.

Spec-Driven Al Development

(Sep. 2025) Github Spec Kit (MIT) -
(Aug. 2025) SDD Flow (MIT) -
Better Spec -

SpecifyX -

SpeckdsS -

Spec-Driven -

S o1 s w0 =

Agentic Coding - Read:
(6th Oct. 2025) OpenAl AgentKit -

ONoGhkwWNE

. Ispeckit.constitution - governing principles
. Ispeckit.specify - what & why (not tech stack)

Ispeckit.plan - tech stack & architecture
Ispeckit.tasks - actionable task lists
Ispeckit.clarify - underspecified areas
Ispeckit.analyze - analyze existing source code
Ispeckit.implement - execute all tasks
Ispeckit.checklist - quality checklists

https://github.com/github/spec-kit
https://github.com/Ataden/SDD_Flow
https://better-spec.com/?utm_source=chatgpt.com
https://www.specifyx.dev/
https://speckjs.github.io/
https://mcpmarket.com/server/spec-driven
https://encantotek.com/top-frameworks-for-building-agentic-ai-systems-in-2025/
https://openai.com/index/introducing-agentkit/

THTTPClient, 22
GenAl examples TNetHTTPClent %
Delphi perspective & @

Vibe Coding - Almost any SOTA LLM.
Other:

MakerAi (MIT) -

Delphi-Al-Developer (MIT) -

Delphi GenAl (MIT) -

Delphi StabilityAl API (MIT) -

DelphiOpenAl (MIT) -

OpenAl-Delphi (CC-0) -

OpenAl for Delphi and Lazarus/FPC (MIT) -
Lumina (BSD-3) -

Delphi Parser -

Online Delphi Code Generator -

https://github.com/gustavoeenriquez/MakerAi
https://github.com/Code4Delphi/Delphi-AI-Developer
https://github.com/MaxiDonkey/DelphiGenAI
https://github.com/MaxiDonkey/DelphiStabilityAI
https://github.com/HemulGM/DelphiOpenAI
https://github.com/magnolima/OpenAI-Delphi
https://github.com/landgraf-dev/openai-delphi
https://github.com/tinyBigGAMES/Lumina
https://delphiparser.com/
https://www.codeconvert.ai/delphi-code-generator

—_—\

GenAl specification content examples

Constitution - what must always be met

Vision (what & how)

Technology stack; compiler, frameworks, dependencies, libs, APls, ...
List of tools and their capabilities

High/low level Architecture, existing code

Requirements, User Stories, Tasks

Coding standards, industry/domain standards, methodology, processes
Risk plan, Test plan, Quality plan, Integration plan, Deployment/Release plan
Data & Domain specifications

Ul / UX specifications

Documentation & Metadata specs

O 0N O ON =

GenAl applications in Delphi

Why?

Rich client / Ecosystem
Images / Text / Audio Video
Spell check
Responsiveness

Upgradability
Privacy

Local documents
Cloud documents
Team work

Web Page

Yes / Awesome
OK/OK/
OK

Awsome

Awsome
Awsome

Delphi Desktop Apps

Yes / OK
OK/OK/OK
OK

Awsome

OK
OK
Awsome

Best practices
Delphi developer perspective

Data, data, data! - transparency, observability, metrics, evaluation, ...
See and think about systems & structures (structured & versioned specification)
Testing Al systems is difficult, automate (run/create), enable human-in-the-loop
o Design for scenario when something goes wrong
o Validate Al outputs automatically, use guardrails
Layered architecture (spec parsing, Al logic, Ul, data, prompts / templates,
GenAl Wrappers, ...)
Prompts & specs:
o Separate prompts & specs from code, version & log them
o Use content templates (with placeholders) for prompts and specs
o Cache prompts & results, retry, async vs. sync, separate/hide keys

Best practices
Embarcadero perspective

e Delphi integrations

o Built-in vs. optional

o Delphi as an agent tool, and other tools (e.g .static code analysis)

o Deployable blocks (e.g. embedded LLMs)
e Enabling model improvement

o Data, data, data! (friendly license)

m Code, articles, documentation, tutorials, blogs, discussions, ...

e Legacy nightmare - version & dependency attribution, code translations
e Community

@ demozjazd - RAD Studio 10.2 - demaZjazd.dproj [Buit] -

x
File Edit Search View Project Run Component Tools Window Help ’Hi =P 10 M=
AR -HEE e - BTk BE NS0 it Windows >-G-umEEQ OE
Structure 2% Welcome Page [iidemozjazdl ¥ ® demoZjazd.dproj - Project Manager ¥ 3%
- - B o -R|E -
nnCzysc S
nnNowaWarstwa(2,
nnNowaWarstwa(B =
nnNowaWarstwa(
rysujsiec(' '); File
45 ProjectGroup!
nnInicjujwarstuy(21 f7] demoZjazd.exe
for i:=1 to do i~ Build Configurations (Debug)
gin 15+ Target Platforms (Win32)
Object Inspector x Writeln; @55 units
|Properties| writeln('Step)
[Dseren ‘ i0K := 0;

if nnGo(Inc(i0K);
if nnGo(.) Inc(i0K)
if nnGo(- alfa) Inc(i0K);
if nnGo(1, 1 alfa) then Inc(iOK);
writeLn('Poprawnie

! i tw 5
g
c
| demoZjazd.dproj .. | Mutti-Device Prev.
wWriteLn('Done.");

A\Projekty\Sharky Neural Network\snnZjaz

ReadL Tool Paletie rx
eadin; L i
e 't v | ¥ || Search |
Delphi Projects A
- Delphi Projects| Delphi Files
= 761 Inset Modified | Code| History OtherFies ¥
Messages rx
' GECSE commana ine Tor aemozJaza.apr %

[dcc32 Hint] demoZjazd.dpr(49): H2164 Variable ‘i is declared but never used in 'wypisz2WagiNeuronu’
Idcc32 Hintl de d.dor(51): H2164 Variable 'waaa' is declared but never used in X
718 8uita] output

Questions?
DISCUSSIoN

