
Copyright © 2025 Piotr Chlebek

SharkTime Software Zlot Programistów Delphi (2025) 8 X 2025

The era of generative content creation
using artificial intelligence
Era generatywnego tworzenia treści z
wykorzystaniem sztucznej inteligencji

— Piotr Chlebek
https://www.linkedin.com/in/piotrr/  

https://www.bsc.com.pl/zlot-programistow-delphi-2025/
https://www.linkedin.com/in/piotrr/

Before we start…
Credits to

● Historical images (inc. this background) https://wikimedia.org/
● Contextual illustrations: Gemini 2.5 Flash Image (Nano Banana)
● More sources inline

Feedback or questions ?
I encourage You to give me feedback or ask a questions.
Yes, You can interrupt me during the presentation.

Opinions and views
expressed in this presentation
are solely my own or quoted.
They are not related to any
company for which I work /
worked.

In Polish: Opinie i poglądy
wyrażone w tej prezentacji są
wyłącznie moje własne lub
cytowane.
Nie są powiązane z żadną
firmą, dla której pracuję /
pracowałem.

https://wikimedia.org/

About me 

Piotr Chlebek
● ~25 years of experience, R&D a wide range

of innovative projects
Speech Recognition & Machine Learning projects, successful
products on the market with industry recognition & awards.
● ML/DS passionate

○ ML Gdańsk community active member
○ Sharky Neural Network - software for education
○ Chess programming

● I Love Delphi (hobby++)

https://www.mlgdansk.pl/
https://www.sharktime.com/en_SharkyNeuralNetwork.html

SharkTime Software 8 X 2025

What is GenAI? 
 
Generative artificial intelligence (Generative AI, GenAI,
or GAI) is a subfield of artificial intelligence that uses
generative models to produce text, images, videos, audio,
software code or other forms of data. These models learn
the underlying patterns and structures of their training data
and use them to produce new data based on the input,
which often comes in the form of natural language prompts. 
 
Source: https://en.wikipedia.org/wiki/Generative_artificial_intelligence 

Copyright © 2025 Piotr Chlebek

Zlot Programistów Delphi (2025)

https://en.wikipedia.org/wiki/Generative_artificial_intelligence
https://www.bsc.com.pl/zlot-programistow-delphi-2025/

A short history of Gen AI 
Sources: https://www.igmguru.com/blog/history-of-generative-ai, https://en.wikipedia.org/, Arup (2015)

Birth of AI 
 
Artificial Intelligence
introduced as a scientific
discipline at the Dartmouth
Conference. 
Perceptron (1958). 
ELIZA (1961). 

The Rise of NN 
 
Recurrent Neural Networks
(RNNs; 1982) & Long
Short-Term Memory
networks (LSTMs; 1997) for
sequences. 
Variational Autoencoders
(VAE; 2013) 

GANs & Diffusion
Models 
 
Generative Adversarial
Networks (GANs; 2014)
have revolutionized image
generation with adversarial
training. 
Diffusion Models (2015). 

Recent Advances
in Gen AI 
 
Transformer Architecture
(2017). 
Generative Pre-trained
Transformer (GPT; 2018)
breakthrough in natural
language generation using
transformers. 

The Rise of
text-to-image 
 
DALL-E (2021), 
Rise of high-quality,
text-to-image tools including
open-source Stable
Diffusion and artistic
Midjourney (2022). 

“Blooming Meadow” 
 
Multimodal & long context -
GPT-4 (2023). 
Emergence of text-to-video -
Sora, Claude 3, Gemini 1.5
(2024). 
AI Code Agents & On-Device AI
(2025). 

1950+  1980  2014  2017  2021  2023+ 

5 

2016 1996 

Source Code Gen AI 
2021 - OpenAI Codex (GPT-3 based) trained on public GitHub code 
2021 - GitHub Copilot - the first generative AI coding assistant 
2023.q4 - “Agentic Coding” 
2025.02 - “Vibe Coding” 
2025.05 - “Spec-Driven AI Development” 

1945 - ENIAC 
1996 - 3dfx Voodoo 
2001 - IBM Power4 
2002 - Sony PlayStation 2 
2006 - Intel Core Duo 
2007 - Nvidia CUDA 
2016 - Google TPU 

https://www.igmguru.com/blog/history-of-generative-ai
https://en.wikipedia.org/
https://medium.com/intuitionmachine/the-alien-look-of-deep-learning-generative-design-5c5f871f7d10

Integrated Copilot, 
IDE help & tutor  

How to use GenAI  

External Copilot / LLM 
or External Tools 
 

Yes, it can overlap! 
Yes, you can

integrate external
LLMs inside!  On Prem  

Hybrid 

Cloud  

Access methods

Vibe Coding   Spec-Driven AI
Development 

Agentic Coding 

Way of approaching

What can GenAI generate? 
[S] Small: code completion, code snippets, comments & docstrings,
summaries, functions, procedures, interfaces, functional tests, unit tests,
property/method stubs, wrappers, SQL snippets, Regex, commit
messages, changelog entries, code review, error explanations, debug
hints, the resources, localized texts, … 
 
[L] Large: classes, units, forms, components code, REST API
clients/servers, refactor patches, serialization, database layers, data model
design, test suites, documentation, collection of resources, … 
 
[XL] Extra Large: new project templates, sample apps, entire services,
middleware layer, entire apps, entire systems, agentic workflows,
automation bots, large refactors, larger documentation, … 
 
[!] But: GenAI often gets it wrong, causing mess and added complexity. 
 

“Transparent
Background”?!  

Practical applications 
in the broad context of Delphi  

Completion, 
Code/UI generation, 
Refactoring, 
Code modernization, 
Code translation 

Explanation, 
Documentation, 
Test, 
QA 

Autocomplete, 
Auto-(re)implement, 
Code Conversion, 
Suggestions, 
Adding Comments, 
Decomposition, 
3rd party Integration, 
Localization, … 

Summarize, Analyze,
Estimate, Explain, 
Generate: Resources,
Test Cases, Docstrings,
Specs/UML, Mocks/Stubs,
Changelog, Release Note,
Help, … 

GenAI (potentially) in the Delphi IDE environment   Runtime  

Embedded: 
- Models (e.g. LLM) 
- Chatbots 
- Voice assistants 
- Natural-language
commands 
… 

Embed, Integrate 

AI-assisted component design, 
GenAI-driven debugging, 
Conversational compiler errors, 
AI pair programming for Delphi, 
FireDAC + LLM - data querying
and natural summaries, 
… 

Experimental 

Brainstorm  

Wait! We're developers, but what about
creating GenAI applications in Delphi? 

Impact  
Machine of five states perspective (1/4)
Idea source: High risk projects by dr Tadeusz Lis

Impact 
Machine of five states perspective (2/4)  

Use if possible and
makes sense

Negotiate & manage

Be careful,
talents needed

Reschedule, iterate,
agile, …

Track & manage

How to deal
with it 

An increased scope
of work is at your

fingertips

Temptation to reduce
the workforce,

Experts needed for
supervision

Very fast once built,
But building won't

be quick

New specific risks,
"hallucinations",

mess

Cheap to vibe,
Cheap to operate,
Expensive to build

Impact 
Machine of five states perspective (3/4)

GenAI
perspective  

An increased scope
of work is at your

fingertips

Temptation to reduce
the workforce,

Experts needed for
supervision

Very fast once built,
But building won't

be quick

New specific risks,
"hallucinations",

mess

Cheap to vibe,
Cheap to operate,
Expensive to build

Impact 
Machine of five states perspective (4/4)

GenAI
perspective  

But that's not all! 
 

Time-to-Market++, Faster Iterations & feedback, 
Rapid Prototyping / POC / MVP, 
Higher Productivity, Better Focus (Less Cognitive
Load), Scalability++, Cross-Platform Support++, API
Integration++, Interoperability++, Legacy
Modernization++, Test Coverage++, Architecture
Compliance++, UX/UI Ideation++, Design
Exploration++, Domain Intelligence++, Onboarding++,
Knowledge Retention++, Communication++, …

:(New kinds of problems/bugs are blooming!
:(Causing mess and adding complexity!

Approach Vibe Coding
Conversational

Spec-Driven AI Development
Structural

Agentic Coding
Autonomous, goal-oriented

Developer Role Prompt engineer Specification author Goal setter

AI Interaction Iterative refinement Guided by specifications Autonomous execution

Best Suited For Rapid prototyping, solo dev Structured projects Large-scale applications

Scalability Very Low Moderate* High

Maintainability Low High Moderate

Upfront Effort Minimal High High

Flexibility High Moderate Low*

Observability Prompt logs and diffs High Low
13 

Let's compare the approaches

GenAI examples
Vibe Coding - Almost any SOTA LLM.

Spec-Driven AI Development

1. (Sep. 2025) Github Spec Kit (MIT) - https://github.com/github/spec-kit
2. (Aug. 2025) SDD Flow (MIT) - https://github.com/Ataden/SDD_Flow
3. Better Spec - https://better-spec.com/
4. SpecifyX - https://www.specifyx.dev/
5. SpeckJS - https://speckjs.github.io/
6. Spec-Driven - https://mcpmarket.com/server/spec-driven

Agentic Coding - Read: Top Frameworks for Building Agentic AI Systems in 2025
(6th Oct. 2025) OpenAI AgentKit - https://openai.com/index/introducing-agentkit/

1. /speckit.constitution - governing principles  
2. /speckit.specify - what & why (not tech stack) 
3. /speckit.plan - tech stack & architecture 
4. /speckit.tasks - actionable task lists 
5. /speckit.clarify - underspecified areas 
6. /speckit.analyze - analyze existing source code 
7. /speckit.implement - execute all tasks 
8. /speckit.checklist - quality checklists 

https://github.com/github/spec-kit
https://github.com/Ataden/SDD_Flow
https://better-spec.com/?utm_source=chatgpt.com
https://www.specifyx.dev/
https://speckjs.github.io/
https://mcpmarket.com/server/spec-driven
https://encantotek.com/top-frameworks-for-building-agentic-ai-systems-in-2025/
https://openai.com/index/introducing-agentkit/

GenAI examples
Delphi perspective
Vibe Coding - Almost any SOTA LLM.
Other:
MakerAi (MIT) - https://github.com/gustavoeenriquez/MakerAi
Delphi-AI-Developer (MIT) - https://github.com/Code4Delphi/Delphi-AI-Developer
Delphi GenAI (MIT) - https://github.com/MaxiDonkey/DelphiGenAI
Delphi StabilityAI API (MIT) - https://github.com/MaxiDonkey/DelphiStabilityAI
DelphiOpenAI (MIT) - https://github.com/HemulGM/DelphiOpenAI
OpenAI-Delphi (CC-0) - https://github.com/magnolima/OpenAI-Delphi
OpenAI for Delphi and Lazarus/FPC (MIT) - landgraf-dev/openai-delphi
Lumina (BSD-3) - https://github.com/tinyBigGAMES/Lumina
Delphi Parser - https://delphiparser.com/
Online Delphi Code Generator - https://www.codeconvert.ai/delphi-code-generator

or THTTPClient,  
TNetHTTPClient 

https://github.com/gustavoeenriquez/MakerAi
https://github.com/Code4Delphi/Delphi-AI-Developer
https://github.com/MaxiDonkey/DelphiGenAI
https://github.com/MaxiDonkey/DelphiStabilityAI
https://github.com/HemulGM/DelphiOpenAI
https://github.com/magnolima/OpenAI-Delphi
https://github.com/landgraf-dev/openai-delphi
https://github.com/tinyBigGAMES/Lumina
https://delphiparser.com/
https://www.codeconvert.ai/delphi-code-generator

GenAI specification content examples
1. Constitution - what must always be met
2. Vision (what & how)
3. Technology stack; compiler, frameworks, dependencies, libs, APIs, …
4. List of tools and their capabilities
5. High/low level Architecture, existing code
6. Requirements, User Stories, Tasks
7. Coding standards, industry/domain standards, methodology, processes
8. Risk plan, Test plan, Quality plan, Integration plan, Deployment/Release plan
9. Data & Domain specifications

10. UI / UX specifications
11. Documentation & Metadata specs

GenAI applications in Delphi
Why?

Web Page Delphi Desktop Apps

Rich client / Ecosystem
Images / Text / Audio Video
Spell check
Responsiveness

Upgradability
Privacy
Local documents
Cloud documents
Team work

Yes / Awesome
OK / OK / Moderate
OK
Moderate

Awsome
Moderate
Low
Awsome
Awsome

Yes / OK
OK / OK / OK
OK
Awsome

OK
OK
Awsome
Low
Demanding

● Data, data, data! - transparency, observability, metrics, evaluation, …
● See and think about systems & structures (structured & versioned specification)
● Testing AI systems is difficult, automate (run/create), enable human-in-the-loop

○ Design for scenario when something goes wrong
○ Validate AI outputs automatically, use guardrails

● Layered architecture (spec parsing, AI logic, UI, data, prompts / templates,
GenAI Wrappers, …)

● Prompts & specs:
○ Separate prompts & specs from code, version & log them
○ Use content templates (with placeholders) for prompts and specs
○ Cache prompts & results, retry, async vs. sync, separate/hide keys

Best practices
Delphi developer perspective

Best practices
Embarcadero perspective

● Delphi integrations
○ Built-in vs. optional
○ Delphi as an agent tool, and other tools (e.g .static code analysis)
○ Deployable blocks (e.g. embedded LLMs)

● Enabling model improvement
○ Data, data, data! (friendly license)

■ Code, articles, documentation, tutorials, blogs, discussions, …
● Legacy nightmare - version & dependency attribution, code translations
● Community

Code 
Demo 

Questions? 
Discussion

